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a b s t r a c t

This paper investigates the disturbance rejection control for stable non-minimum phase (NMP) systems
with time delay. A robust disturbance observer (DOB) based control structure is proposed. Specifically,
the robust DOB is employed to compensate the uncertain plant into a nominal one, based on which a
prefilter is adopted to acquire desired performance. Then, a novel DOB configuration strategy for stable
NMP systems is proposed. This strategy synthesizes the internal and robust stability, relative order and
mixed sensitivity design requirements together to establish the optimization function. The optimal
solution is obtained by standard H1 theory under the condition of guarantying the presented
requirements. We also investigate how the DOB can compensate the uncertain plant into a nominal
one. The specifical design procedure is presented for an uncertain plant with both unstable zeros and
time delay.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In most practical industrial processes, the inevitable system
uncertainties and external disturbances will have great influence
on the performance of control system [1]. The efficient disturbance
rejection method is the compensation by the estimation of model
mismatch and external disturbances [2–5]. The disturbance obser-
ver (DOB) based control method was originally proposed by
Ohnishi in 1987 [6], whose effectiveness in disturbance rejections
has been shown in many applications, such as humanoid joint
control [7], robot manipulators control [8], aircraft control [9],
optical disk control [10], motor control [11], vibration control
[12,13], ball mill grinding circuits control [14,15], etc.

DOB consists of a nominal model and a low-pass filter named
Q filter. The design of Q filter is the key point of DOB configuration,
which attracts many researchers' attentions. Typical filter forms,
such as the binomial coefficient and Butterworth filter [16,17] are
widely used. At this point, the performance mainly depends on the
cut-off frequency. However, selection of parameters mainly
depends on experiences, while there is no specific criterion for
evaluation. The performance of system is largely limited by the
fixed form of Q filter. Moreover, the robust stability can only be
analyzed after the Q filter is determined. This means that we

should repeat the design procedure until the robust stability
requirement is guaranteed. There have been abundant results in
using the H1 theory for Q filter design [18–20]. Linear Matrix
Inequality or Algebraic Riccati Equation is applied in [18,19] to
optimize the Q filter with static gain. The standard H1 theory is
employed in [20] to optimize the Q filter.

However, these researches neglect the internal stability of the
system, and these methods cannot be used directly in non-
minimum phase (NMP) systems. Since the inverse of nominal
plant is required in DOB configuration, the internal stability
problem occurs if the nominal plant has the right-half of the
s-plane (RHP) zeros. Meanwhile, the inverse of nominal model is
non-causal according to the time delay. The configuration of DOB
based control system for NMP system has been widely concerned
in recent years. The authors present a DOB based model predictive
control (MPC) method for a NMP process with time delay [14,15].
However, RHP zeros of the plant are not considered. In [21,22],
a new filter in parallel with the Q filter is designed, and hence the
parallel connection with the plant becomes of minimum phase.
Then the conventional DOB configuration procedure is employed
for the new system. A non-causal, minimum phase transfer
function is proposed in [23] to remove the internal stability
problem caused by RHP zeros. Nevertheless, the time delay is
not considered in these methods. The improved DOB-MPC scheme
is proposed in [24] for stable NMP systems, in which both RHP
zeros and time delay are taken into account. An allpass portion is
introduced in the Q filter to eliminate the influence caused by the
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NMP property of the plant. However, both internal and robust
stability of the system are not considered and the performance of
the DOB is not analyzed specifically. In summary, although there
are several researches in DOB configuration for NMP system, there
is no systematic design of DOB for such system with both RHP
zeros and time delay.

In this paper, we focus on the DOB based controller design for
NMP systems. A novel DOB configuration strategy is proposed
systematically. We first consider the robust internal stability,
relative order, mixed sensitivity design requirements together to
establish an optimization function. Then, the optimization pro-
blem is transformed into a standard H1 one, based on which the
solution of Q filter is optimized by the existing standard H1
theory. We also investigate how the DOB can compensate the real
plant into the nominal one. At last, a design example is presented
specifically on an uncertain plant with both RHP zeros and time
delay. In summary, the proposed strategy can be successfully
employed in the DOB configuration for stable NMP systems, and
the main contributions of this paper are presented as follows:

(1) A systematic design strategy of DOB is proposed for stable
NMP systems by taken both RHP zeros and time delay into
account.

(2) The optimization function is established by taken robust
internal stability, relative order, mixed sensitivity design
requirements into account together.

(3) The solution of Q filter is optimized by introducing the allpass
portion into virtually controlled objective of H1 problem,
based on which the unstable poles of inverse of nominal plant
can be eliminated for robust internal stability constraints.

(4) Discussions on how the DOB can compensate the real plant
into the nominal one are presented, which are verified in the
simulations.

The rest of this paper is organized as follows. In Section 2, the
control structure of the system is analyzed and the NMP problem
is stated. In Section 3, we give the constraints of controller and
DOB using internal stability principle, then the DOB is designed to
acquire desired requirements. The performance of the proposed
DOB is also under exploration. In Section 4, we consider a stable
NMP plant with RHP zeros and time delay to implement the
design procedure specifically. In Section 5, simulation on a rotary
mechanical system is carried out to show the effectiveness of the
proposed method, followed by Conclusions in Section 6.

2. Problem formulation

The traditional control system based on DOB is expressed in
Fig. 1, where P(s) is the plant model, Pn(s) is the nominal model,
C(s) and Q(s) are the controller and Q filter to be designed.
RðsÞ;YðsÞ;DðsÞ and N(s) denote the Laplace transformation of
reference input r, output y, external disturbances d and measure-
ment noise n, respectively. τ is the dead-time of the plant while τn
is its nominal value. DOB considers the mismatch between real
plant and nominal one as equivalent disturbance acting on its
nominal model. It can estimate the equivalent disturbances

combined with the external disturbances, and feed back the
estimated disturbances for cancellation. Then the controller is
applied as a prefilter to stabilize the nominal system compensated
by DOB for desired performance. This control system has two
degrees-of-freedom (2DOF). Hence, the DOB can be optimized for
disturbance rejection performance and then the prefilter can be
chosen independently for setpoint tracking performance. In this
control system, the design and optimization of controller and DOB
can be implemented separately.

The control objective is to design the DOB to attenuate the
compound disturbance caused by model mismatch and external
disturbances. Then, a prefilter is designed to stabilize the nominal
model to acquire desired performance. Since DOB can estimate the
compound disturbances, the controller C(s) can be designed based
on the nominal plant Pn(s). Here, H2 theory is applied to design the
controller C(s) and the prefilter can be obtain as:

CðsÞ
1þCðsÞPnðsÞ

: ð1Þ

For the NMP systems, the inverse of the RHP zeros and time
delay is physically unrealizable for its non-causal property. The
internal stability is a basic requirement for a practical closed-loop
system, but unfortunately, in the research work of DOB design, the
internal stability analysis for this kind of system has been only
discussed in [25]. Moreover, most DOB design methods only
validate the robust stability after the parameters of the DOB are
determined. It is a complicated work for us to adjust the para-
meters repeatedly to guarantee the robust stability. Thus, in this
paper, we mainly focus on the systematic design strategy of DOB
for stable NMP systems. The system model P(s) is described with
multiplicative uncertainty as:

PðsÞ ¼ PnðsÞð1þΔðsÞÞ; ð2Þ
where P(s) and Pn(s) are all stable plants with NMP property. The
nominal model Pn(s) is expressed as:

PnðsÞ ¼
NðsÞ
DðsÞ∏i

ð�sþξiÞ; ð3Þ

where ReðξiÞ40, N(s) and D(s) have no root with positive real part.

3. Robust DOB design

The transfer function of the DOB structure can be written as:

YðsÞ ¼M�1ðsÞ½PðsÞe� τsð1�Q ðsÞe�τnsÞDðsÞþPðsÞe�τsUrðsÞ
�P�1

n ðsÞPðsÞQ ðsÞe�τsNðsÞ�: ð4Þ
where MðsÞ ¼ 1þP�1

n ðsÞPðsÞQ ðsÞe� τs�Q ðsÞe� τns.
From Eq. (4), we notice that the suppression performance

against external disturbances d mainly depends on the factor
ð1�Q ðsÞe� τnsÞ. However, it is very hard for us to optimize Q(s)
directly with time delay. By introduce the notation Q 0ðsÞ9
Q ðsÞe�τns, we can consider Q 0ðsÞ directly. Then, Q(s) can be
obtained by replace the time delay e�τns with a Padè approxima-
tion. Eq. (4) can be rewritten as:

YðsÞ ¼M�1ðsÞ½PðsÞe� τsð1�Q 0ðsÞÞDðsÞþPðsÞe�τsUrðsÞ
�P�1

n ðsÞPðsÞQ 0ðsÞNðsÞ�: ð5Þ
Assume that nominal model of the plant matches the real plant

very well (i.e., PðsÞ ¼ PnðsÞ, τ¼ τn), then Eq. (5) can be simplified as:

YðsÞ ¼ PnðsÞe�τnsð1�Q 0ðsÞÞDðsÞþPnðsÞe�τnsUrðsÞ�Q 0ðsÞNðsÞ: ð6Þ
From Eq. (6), we can see that Q 0ðsÞ should be reduced as far as

possible to attenuate the influence caused by measurement,
whereas 1�Q 0ðsÞ should also be small to reject the external
disturbances. These two conditions are conflicting. In practicalFig. 1. The DOB based controller for the NMP system.
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applications, disturbances normally happen at low frequencies,
whereas measurement noise and system uncertainties take effects
at high frequencies. This suggests that Q 0ðsÞ should be designed as
a low-pass filter, which can be designed by frequency weighted
minimization.

3.1. Robust internal stability

A control system is internally stable if bounded signals injected at
any point of the control system generate bounded responses at any
other point [26]. The internal stability is a basic requirement for a
practical closed-loop system. Here, we give the sufficient condition of
the internal stability of the DOB based control structure.

Theorem 1. The control system described in Fig. 1 is internally stable
if the following requirements are satisfied:

Requirement 1.
CðsÞ

1þPnðsÞCðsÞ
has no RHP poles;

Requirement 2. Q ðsÞARH1 and it can eliminate all the RHP

poles of P�1
n ðsÞ.

Requirement 3. The open loop transfer function from Ur to U is
stable.

Requirement 4. The robust stability of the closed-loop system
against the system uncertainties should be satisfied.

Proof. We can easily find that the transfer function from R(s) to
Ur(s) is

CðsÞ
1þPnðsÞCðsÞ, hence Requirement 1 must be satisfied.

Then we analyze the internal stability of the DOB structure.
With the configuration of Fig. 1, the six transfer functions from
½Ur D N�T to ½Y U�T are given as:

1
MðsÞ

PðsÞe�τs PðsÞe�τsð1�Q ðsÞe� τnsÞ �P�1
n ðsÞPðsÞQ ðsÞe�τs

1 ð1�Q ðsÞe�τnsÞ �P�1
n ðsÞQ ðsÞ

" #
;

ð7Þ
If all the components of the matrix in Eq. (7) and 1

MðsÞ are all in

RH1, then the transfer function from ½Ur D N�T to ½Y U�T is stable,
based on which we can guarantee the internal stability.

Since P(s) and Pn(s) are with no RHP poles, if Requirement 2 is
satisfied, then we can find that all components of matrix in Eq. (7)
are in RH1.

Noticing that 1
MðsÞ is the transfer function from Ur to U, if open

loop transfer function from Ur to U is stable and the closed-loop
system is robustly stable, then the close-loop system is input
output stable with input Ur and output U. Hence, 1

MðsÞARH1 if
Requirement 3 and 4 are satisfied. Finally, we can come to a
conclusion that the control system described in Fig. 1 is internally
stable if Requirements 1 to 4 are satisfied. □

Theorem 2. If the following inequality is satisfied, the condition of
robust stability described in Requirement 4 of Theorem 1 is satisfied.

jQ 0ðjωÞWΔðjωÞjo1; 8ω; ð8Þ
where WΔðjωÞ4FðωÞ; 8ω, and the definition of FðωÞ is given as

FðωÞ ¼ jΔðjωÞe�ðτ�τnÞjωjþj1�e�ðτ� τnÞjωj; 8ω ð9Þ

Proof. The equivalent structure is given in Fig. 2. According to the
Small Gain Theory, we get the requirement of robust stability as:

Q ðsÞe� τs

Q ðsÞe�τns�Q ðsÞe� τs�1
ΔðsÞ

����
����
1
o1: ð10Þ

The triangle inequality is applied to acquire a more simple
expression. According to Eq. (10), we get:

jQ 0ðjωÞΔðjωÞe�ðτ� τnÞjωjo jQ 0ðjωÞð1�e�ðτ� τnÞjωÞ�1j; 8ω: ð11Þ

From the triangle inequality, we get:

jQ 0ðjωÞð1�e�ðτ�τnÞjωÞ�1jZ1�jQ 0ðjωÞð1�e�ðτ�τnÞjωÞj; 8ω: ð12Þ
Then, if the following Eq. is satisfied, then Eq. (11) is satisfied.

jQ 0ðjωÞΔðjωÞe�ðτ� τnÞjωjþjQ 0ðjωÞð1�e�ðτ� τnÞjωÞjo1; 8ω: ð13Þ

With the definition of FðωÞ, we can easily obtain that the
closed-loop system is robustly stable against the system uncer-
tainties if Eq. (8) holds. □

Remark 1. The above two Theorems provide us with the robust
internal stability constraints for DOB configuration. These above
constraints will be applied to establish the cost function.

3.2. Establishment of the cost function

The sensitivity and complementary sensitivity function of the
DOB structure are the transfer functions from equivalent distur-
bance at output terminal and input ur to output y, respectively.
From Fig. 1, we can derive:

SDOB ¼
1�Q 0ðsÞ
MðsÞ ; TDOB ¼

P�1
n ðsÞPðsÞQ 0ðsÞ

MðsÞ : ð14Þ

With the assumption that nominal model of the plant matches
the real plant very well, This results in TDOBðsÞ ¼ Q 0ðsÞ and
SDOBðsÞ ¼ 1�Q 0ðsÞ. Then, it is shown that in order to achieve
disturbance rejection, robustness against system uncertainties
and noise attenuation performance, it is desirable to reduce Q 0ðsÞ
and 1�Q 0ðsÞ as much as possible. Since external disturbances is
normally at low frequency while measurement noise is at high
frequencies, 1�Q 0ðsÞ should be minimal in low frequencies (con-
trol band), whereas Q'(s) should be minimal in high frequencies
(system uncertainties and noise band).

From the descriptions above, we know that the design require-
ments of Q filter can be summarized as follows:

1. The relative order restrictions of Q(s) should higher than or at
least equal to that of Pn(s) to make sure that Q ðsÞP�1

n ðsÞ is a
proper transfer function.

2. The designed Q filter should eliminate the compound distur-
bance as well as the influence caused by measurement noise.

3. The robust stability of the closed-loop system should be
satisfied.

We define a set of Q 0ðsÞ as:

Ωk ¼ FðsÞjFðsÞ ¼ AðsÞ
BðsÞ ¼

∑q
j ¼ 0ajs

j

∑p
i ¼ 0; bis

i
; aqa0; bpa0; p�qZk

( )
;

ð15Þ
where k is the relative order of Pn(s), A(s) and B(s) are coprime
polynomials.

The solution of the Q filter should eliminate the disturbances as
far as possible under the condition of guarantying the require-
ments of internal and robust stability, relative order and

Fig. 2. Equivalent structure of robust stability analysis.
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measurement noise suppression performance. Then, we establish
the optimization function from the above requirements.

From Eq. (5), the disturbance and measurement noise attenua-
tion problem can be regarded as the selection of the tradeoff
between sensitivity and complementary sensitivity functions:

min
Q 0 ðsÞ

jW1ðjωÞð1�Q 0ðjωÞÞj

min
Q 0 ðsÞ

jWNðjωÞQ 0ðjωÞj;

8><
>: ð16Þ

where W1 and WN are the weighting functions which reflect the
prior frequency property of the external disturbances and mea-
surement noise, respectively. Here, we can transform the above
functions into the following norm:

max γ;min
Q 0 ðsÞ

‖γW1ðsÞð1�Q 0ðsÞÞ‖1o1

‖WNðsÞQ 0ðsÞ‖1o1:

8<
: ð17Þ

With the consideration of the robust internal stability of closed-
loop system, we combine the requirements in Eqs. (8) and (17)
together to acquire the new optimization function as:

max γ;

s:t: min
Q 0 ðsÞAΩk

Q 0 ðsÞA RH1

γW1ðsÞð1�Q 0ðsÞÞ
W2ðsÞQ 0ðsÞ

" #�����
�����
1
o1; ð18Þ

where jW2ðjωÞj ¼maxfjWΔðjωÞj; jWNðjωÞjg; 8ω. jW2ðjωÞj should be
selected as close as possible to jWΔðjωÞj and jWNðjωÞj, or it will
lead the system more conservative.

3.3. Q filter optimization

For the optimization problem in Eq. (18), it is very hard to get
the solution Q 0ðsÞ to guarantee the internal stability requirements.
The standard H1 theory is applied for this kind of optimization
problem in [20]. By define the transfer function of virtual loop as:

~LðsÞ ¼ Q 0ðsÞ
1�Q 0ðsÞ ¼

~P ðsÞ ~K ðsÞ; ð19Þ

the Q filter design problem becomes a standard H1 problem as:

max γ;

s:t: min
Q 0 ðsÞAΩk

Q 0 ðsÞA RH1

γW1ðsÞðIþ ~P ~K Þ�1

W2ðsÞ ~P ~K ðIþ ~P ~K Þ�1

" #�����
�����
1
o1; ð20Þ

where ~LðsÞ ¼ ~PðsÞ ~K ðsÞ and ~PðsÞ; ~K ðsÞ are the virtually controlled
objective and controller, respectively.

The virtually controlled objective ~PðsÞ is given as:

~P ðsÞ ¼ P0ðsÞPAðsÞ; ð21Þ
where P0ðsÞ is a stable plant and W2ðsÞP0ðsÞ must be proper to
guarantee the solution of the standard H1 problem, PA(s) is an
allpass portion which includes all the RHP zeros of Pn(s):

PAðsÞ ¼∏
i

�sþξi
sþξHi

; ReðξiÞ40; ð22Þ

where the superscript H denotes complex conjugate.

Theorem 3. The optimal loop function ~L
nðsÞ is independent of the

selection of ~P ðsÞ and uniquely determined. In addition, for any
~P ðsÞAΣp, these two H1 norm optimization problems in Eqs. (18)
and (20) are equivalent.

Proof. Let Σp be a set of virtually controlled objectives. For a
virtually controlled objective ~PðsÞAΣp, assume that ~K ðsÞ is the
optimal solution of (20). Then ~P ðsÞ has k stable poles pn

i ði¼ 1;…; kÞ.
From loop shaping theory, it is clear that the optimal solution ~K

nðsÞ

of the problem (20) includes k zeros equal to these poles as

~K ðsÞ ¼ ~K 0ðsÞ ∏
k

i ¼ 1
ðsþpn

i Þ: ð23Þ

Since ~LðsÞ ¼ ~P ðsÞ ~K ðsÞ ¼ ~K 0ðsÞ is optimal open-loop function. For
another virtual plant, we can get the similar conclusion and ~K 0ðsÞ
is also an optimal open-loop function for ~P1ðsÞ. This means that
selection of ~P ðsÞ does not have any influence on minimizing the
norm of the problem (17), resulting in ~LðsÞ ¼ ~K 0ðsÞ. □

For a given virtually controlled objective ~P ðsÞ, if we can acquire
the optimal solution of the virtual controller ~K ðsÞ, then we can get
the Q filter as:

Q 0ðsÞ ¼
~PðsÞ ~K ðsÞ

1þ ~P ðsÞ ~K ðsÞ
: ð24Þ

Then, due to the definition of Q 0ðsÞ, we get Q ðsÞ ¼Q 0ðsÞeτns.
Here, a first order Padè approximation is introduced as
eτnsC μτnsþ1

�ð1�μÞτnsþ1;μA ½0;1�, here we simply choose μ¼ 0:5 and get:

Q ðsÞ ¼ Q 0ðsÞ 0:5τnsþ1
�0:5τnsþ1

: ð25Þ

From Eq. (25), we find that Q(s) will include a RHP pole as s¼ 2
τn
,

which is not allowable. Hence, if there exists a time delay that
should be considered, the selection of PA(s) should include the
unstable zero s¼ 2

τn
such that the finally solution Q(s) has no RHP

poles.

Theorem 4. For the Q filter optimized by the standard H1 theory,
the following properties hold:

1. The relative order of optimized Q(s) is higher than or equal to that
of weighting function W2ðsÞ.

2. The optimized Q ðsÞARH1, and it has all the RHP zeros of Pn(s).
3. The open loop transfer function from Ur to U is stable.

Proof. 1. From the optimization function in Eq. (18) and loop
shaping theory, we know that ‖1�Q 0ðsÞ‖1o‖ 1

γW1ðsÞ‖1 and

‖Q 0ðsÞ‖1o‖ 1
W2ðsÞ‖1. Then we can obtain the following Eq. as:

lim
ω-1

jW2ðjωÞQ 0ðjωÞjo1; ð26Þ

hence, the relative order of Q 0ðsÞ is higher than or equal to that of
W2ðsÞ. From the definition of Q 0ðsÞ, we can conclude that Q(s) has
the same order property as Q 0ðsÞ.

2. From the description of H1 theory, we know that the closed-
loop system of the virtual H1 problem is internally stable, then

Q 0ðsÞ ¼ ~P ðsÞ ~K ðsÞ
1þ ~P ðsÞ ~K ðsÞARH1. Since Q(s) has the same poles with Q 0ðsÞ,

we can come to a conclusion that Q ðsÞARH1.
Notice that there is no RHP zero-pole cancelation between the

virtual plant and controller, ~LðsÞ has all the RHP zeros of ~P ðsÞ.
Assume that ~LðsÞ ¼ NL� ðsÞNLþ ðsÞ

DLðsÞ , and DL(s) is coprime with

NL� ðsÞNLþ ðsÞ, where
NLþ ðsÞ ¼ ð�0:5τnsþ1Þ �∏ið�sþξiÞ;ReðξiÞ40. Then, Q(s) can be
expressed as:

Q ðsÞ ¼ NL� ðsÞNLþ ðsÞ
DLðsÞþNL� ðsÞNLþ ðsÞ

0:5τnsþ1
�0:5τnsþ1

; ð27Þ

that is, Q(s) have the RHP zeros of Pn(s), then the optimized Q(s)

can eliminate all the RHP poles of P�1
n ðsÞ.

3. From the equivalent structure in Fig. 3 and the definition of
Q 0ðsÞ, the open loop transfer function from Ur to U is give as:
GUUr ¼ 1

1�Q 0 ðsÞ. According to Eq. (24), this transfer function can be

rewritten as: GUUr ¼ 1þ ~P ðsÞ ~K ðsÞ. Notice that the virtual plant and
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controller are all stable plant, hence, the transfer function GUUr is
stable. □

The above Theorem 3 shows that if the weighting functions and
virtual control objective are well-selected, the optimized Q filter
satisfies the relative order constraint, and can eliminate the
unstable poles of P�1

n ðsÞ.

3.4. Further discussions of DOB

The DOB based control structure is proposed to suppress the
input external disturbances. However, DOB can also deal with the
internal uncertainties. It is very important to analyze how the DOB
can compensate the real plant into a nominal one. Here, we regard
the nominal plant as

YnðsÞ ¼ PnðsÞe� τnsUrðsÞ; ð28Þ
define the error between real plant and nominal one as
eðtÞ9yðtÞ�ynðtÞ, and from (4), we get:

EðsÞ ¼M�1ðsÞ½ð1�Q ðsÞe�τnsÞðPðsÞe�τs�PnðsÞe� τnsÞUrðsÞ
�Q ðsÞP�1

n ðsÞPðsÞe� τsNðsÞþð1�Q ðsÞe� τnsÞPðsÞe�τsDðsÞ�: ð29Þ
Then, the equivalent control framework is given in Fig. 3, where

Dg(s) is the general disturbance caused by both model mismatch
and external disturbances:

DgðsÞ ¼M�1ðsÞ½ðPðsÞP�1
n ðsÞe�ðτ�τnÞs�1ÞUrðsÞ�PðsÞP�1

n ðsÞe�ðτ�τnÞsDðsÞ�:
ð30Þ

From the transfer function of Eq. (29), we know that the
measurement noise can be suppressed if Q filter has low-pass
property. If there is no plant uncertainties, the system input of
DOB structure ur will not affect the output y. The question we
concern about is how the DOB suppress the disturbance caused by
internal uncertainties and external disturbances. Then, we analyze
the performance of the proposed DOB under different conditions.
In practical applications, a time-varying signal can be represented
into sine signals under fourier decomposition. Without loss of
generality, we mainly analyze the condition that final-value of d
exists, or d is a sine signal.

3.4.1. The final-value of ur and d exists
The Final-value Theorem can be applied to investigate the

output error as:

eð1Þ ¼ lim
t-1

eðtÞ ¼ lim
s-0

sEðsÞ ¼ lim
s-0

ð1�Q ðsÞe�τnsÞ

� lim
s-0

PnðsÞðPðsÞe�τs�PnðsÞe� τnsÞ
PnðsÞþQ ðsÞðPðsÞe� τs�PnðsÞe�τnsÞ � lims-0

sUrðsÞ
�

þ lim
s-0

PnðsÞPðsÞe� τs

PnðsÞþQ ðsÞðPðsÞe� τs�PnðsÞe� τnsÞ � lims-0
sDðsÞ

�
; ð31Þ

where Ur(s) and D(s) denote the Laplace transformation of ur(t)
and d(t) such that:

lim
s-0

sUrðsÞ ¼ urð1Þ ¼ constant

lim
s-0

sDðsÞ ¼ dð1Þ ¼ constant:

8<
: ð32Þ

If the DC gain of P(s) and Pn(s) are both constant, then, we can
come to a conclusion that eð1Þ ¼ 0 if DC gain of Q(s) is 1. If P(s) or
Pn(s) has zeros on imaginary axis, 1�Q ðsÞe� τns should possess
corresponding zeros to hold eð1Þ ¼ 0. This can be achieved easily
by setting the correspondingly poles in weighting function W1ðsÞ.

3.4.2. External disturbance d is sine signal
At present, the final-value of eð1Þ no longer exists since the

transfer function has two poles on imaginary axis. Hence, we hope
1�Q ðsÞe�τns can eliminate the poles on imaginary axis. This can be
acquired if we add the corresponding poles into weighting function
W1ðsÞ. Then, the proposed DOB can suppress the output error caused
by periodic ur or d. However, the existence of time delay may have a
terrible effect on zeros of 1�Q ðsÞe�τns. The closer the zeros of
1�Q ðsÞe�τns to poles on imaginary axis, the better disturbance
rejection performance against periodic signals will be achieved.

4. Design example

In this section, we present the DOB and controller design
procedure specifically. The simulation results are shown to prove
the effectiveness of the proposed method.

The NMP process usually exists in many industrial and chemi-
cal applications. The dead-time property and unknown distur-
bances are very hard to deal with. Here, we choose the following
NMP process with RHP zeros, dead-time and disturbance to
validate the proposed method in this paper. The transfer function
of the plant is expressed as:

PðsÞ ¼ �sþ1
ð3sþ1Þð2sþ1Þ �

ω2
n

s2þ2ξωnsþω2
n
; ð33Þ

where ωn ¼ 20 rad, ξ¼ 0:25. The nominal model is given as:

PnðsÞ ¼
�sþ1

ð3sþ1Þð2sþ1Þ: ð34Þ

The dead-time and its nominal values are given as: τ¼ 1:1s;
τn ¼ 1s. The upper bound of time delay is defined as 0:1s, which is
used to select the weighting functionW2ðsÞ. The disturbance acting on
the plant is sine signal with the amplitude 1 and frequency 1 rad/s.
And then, we give the following procedures of DOB configuration.

Step 1. Select the weighting functionsW1ðsÞ andW2ðsÞ that reflect
the design specifications such as disturbance rejection performance,
robust stability and mixed sensitivity design requirements.

We hope the selection of weighting function W1ðsÞ can sup-
press the periodic component of external disturbances. Mean-
while, from the description of general disturbance in Eq. (30), Q(s)
should possess a pole at the origin to eliminate system uncertain-
ties. From the specified form of external disturbances, we select
the weighting function as:

W1ðsÞ ¼
0:5

s2þ1
þ1
s
¼ s2þ0:5sþ1

s3þs
: ð35Þ

If there is no prior knowledge of the disturbances, we can simply
choose W1ðsÞ ¼ 1

s to attenuate load disturbances.
From the definition of W2ðsÞ, we know that it must be higher

than WηðsÞ and WΔðsÞ at all frequency range to guarantee robust
stability and measurement noise suppression performance. In this
simulation, the weighting function W2ðsÞ should have suppression
of �50 dB against measurement noise at frequency of 1000 rad/s
with the premise of robust stability. The weighting function is
chosen as:

W2ðsÞ ¼
sþ1:5
2:2

; ð36Þ

and from Fig. 4, we notice that the selected W2ðsÞ satisfies the
above requirements.

Fig. 3. Equivalent control framework with DOB.
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Step 2. Select a virtually controlled objective ~P ðsÞAΣp that
reflects the relative order with the RHP parts of Pn(s).

From Eq. (21), we choose the virtually controlled objective as:

~P ðsÞ ¼ 1
sþ2

� �sþ1
sþ1

� �sþ2
sþ2

: ð37Þ

Step 3. According to the framework of standard H1 problem,
the optimal solution ~KoptðsÞ is obtained due to the proposed
optimization problem in Eq. (20).

Under the standard H1 theory, we get the virtually optimal
controller while γ ¼ 0:1804 as:

~K ðsÞ ¼ 42:1672ðsþ3Þðsþ2Þðsþ1Þ
sðsþ21:99Þðs2þ1Þ � s

2�0:3595sþ0:9505
s2þ2:269sþ14:78

: ð38Þ

Here, notice that ~K ðsÞ is proper and can eliminate all the poles of
~P ðsÞ.

Step 4. Obtain optimal loop function ~LðsÞ and then compute the
optimal Q filter by Eqs. (24) and (25).

From Step 3, we obtain Q filter as:

Q ðsÞ ¼ �42:1672ðsþ2Þðs�1Þ
ðsþ19:16Þðsþ2:293Þðs2þ2:41sþ1:877Þ

�s
2�0:3595sþ0:9505
s2þ0:3922sþ0:9724

: ð39Þ

Here, we find that the Q filter can eliminate the RHP poles of
P�1
n ðsÞ, which meets Requirement 2 of Theorem 1.
Step 5. Design a controller C(s) as the prefilter based on the

nominal plant Pn(s). Requirement 1 of Theorem 1 should be
satisfied.

The controller is designed based on H2 theory as:

CðsÞ ¼ 6s2þ5sþ1
0:2s2þ4:2s

: ð40Þ

Then we get the prefilter as:

CðsÞ
1þCðsÞPnðsÞ

¼ 6s2þ5sþ1
0:2s2þ3:2sþ1

; ð41Þ

which satisfies Requirement 1 of Theorem 1. The whole control
structure based on DOB has been successfully constructed.

If we do not consider the time delay in Q filter design
procedure, the following Q filter Q 0ðsÞ will be obtained:

Q 0ðsÞ ¼ �2:2012ðs�1Þðs2�0:2707sþ0:7714Þ
ðs2þ2:732sþ2:027Þðs2þ0:3414sþ0:8379Þ: ð42Þ

We also use the method proposed in [24] to design the Q filter.
The following two Q filters with same relative order as Q(s) are

given as:

Qb1ðsÞ ¼ 1
ðτ1sÞ2 þ2τ1sþ1

� � sþ1
sþ1 ;

Qb2ðsÞ ¼ 3τ2sþ1
ðτ2sÞ3 þ3ðτ2sÞ2 þ3τ2sþ1

� � sþ1
sþ1 :

8<
: ð43Þ

where τ1 ¼ 0:25; τ2 ¼ 0:85 is selected to guarantee the robust
stability.

The comparison of frequency magnitude of the above Q filters
are expressed in Figs. 5 and 6. From the frequency responses in
Fig. 5, it is verified that designed Q filters Q(s) and Q 0ðsÞ under
weighting function W2ðsÞ satisfies the robust stability condition.
Meanwhile, the time constants in Qb1ðsÞ and Qb2ðsÞ are well-
selected for robust stability condition. Since time delay is an
allpass potion, designed Q 0ðsÞ without consideration of time delay
will not affect the robust stability of the system. Then we analyze
the disturbance suppression performance. Nevertheless, if we do
not consider the time delay during Q filter design procedure, the
time delay will bring frequency response of 1�Q ðsÞe�τns with a
translation. This is revealed in Fig. 6. From the enlarged frequency
response of 1�Q ðsÞe�τns, only the Q filter which considers the
time delay will lead the frequency response of 1�Q ðsÞe� τns a
sharp drop at frequency of 1 rad=s, with its magnitude almost
�50 dB at this frequency. According to Eq. (4), we know that this Q
filter can suppress the constant disturbances as well as periodic
disturbances with frequency of 1 rad=s. Nevertheless, the magni-
tude of other three filters is larger at frequency of 1 rad=s in Fig. 6,
which means 1�Q 0ðsÞe�τns cannot eliminate the poles of D(s) on
imaginary axis. This indicates that the disturbance rejection
performance of Q(s) is the best of these Q filters. Especially, we
notice that the frequency response of Q 0ðsÞ, Qb1ðsÞ and Qb2ðsÞ at
ω¼ 1 rad are all larger than 0 dB, which means these three filters
will even enlarge the influence caused by external disturbances.

In the simulations, external disturbances with constant and
periodic value are taken into account, respectively. Fig. 7(a) shows
the step response of the system with constantly external distur-
bances, whereas the performance with periodic disturbance is
presented in Fig. 7(b). Since the DC gain of the mentioned Q filters
is 1, these Q filters can eliminate the external disturbances with
constant value easily. We also find that DOB with Q(s) has better
performance of periodic disturbance attenuation. Since the fre-
quency response of Q 0ðsÞ, Qb1ðsÞ and Qb2ðsÞ at ω¼ 1 rad are all
larger than 0 dB, in other words, these three filters will enlarge the
output error caused by periodic external disturbances. Hence, to
deal with the periodic external disturbances, a well-designed Q
filter is especially important for NMP systems. The estimation

Fig. 5. Robust stability against system uncertainties.

Fig. 4. Selection of weighting function W2ðsÞ.
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effect with periodic disturbance is shown in Fig. 8, it is clearly that
the proposed DOB can estimate the general disturbance Dg

accurately within 10 second. The control output in shown in
Fig. 9, with the estimation of DOB, the proposed controller can
adjust the control output according to the disturbances to increase
the control accuracy. Fig. 7(b) also shows that the control accuracy
of the overall system increase with the convergence of DOB.

5. Application of mechanical system

In this section, a rotary mechanical system is introduced to verify
the effectiveness of the proposed control scheme. The rotary
mechanical system consists of inertias, dampers, torsional springs, a
timing belt, pulleys, and gears. The transfer function of the plant is
shown as follows [27]

PðsÞ ¼ 123:853� 104ð�sþ3:5Þ
ðs2þ6:5sþ42:25Þðsþ45Þðsþ190Þ: ð44Þ

Notice that the poles s¼ �45 and s¼ �190 are far away from
the dominant conjugate poles, and consider the uncertainties of

the model. The nominal plant is selected as

PnðsÞ ¼
144:86ð�sþ3Þ

ðs2þ6:5sþ42:25Þ: ð45Þ

Fig. 7. Step response with external disturbances. (a) Constantly disturbance.
(b) Periodic disturbance.Fig. 6. Comparison of disturbance rejection performance. (a) Frequency magnitude

responses. (b) Enlarged view.

Fig. 8. Estimation effect of periodic disturbance.
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To suppress the constantly external disturbances under the
condition of guarantying the robust stability, the weighting func-
tions are given as

W1ðsÞ ¼
1
s

W2ðsÞ ¼
0:2sþ3

9
:

8>><
>>: ð46Þ

Since the relative order of Pn(s) is 1, the relative order of W2ðsÞ is
chosen as 1 to make the relative order of Q(s) same as that of Pn(s).
Then, follow the design specifications in Section 4, by introduce
the virtually control objective

P
�

sð Þ ¼ 1
sþ2

� �sþ3
sþ3

; ð47Þ

the virtual controller is optimized as

K
�

sð Þ ¼ 45ðsþ3Þðsþ2Þ
sðsþ64:57Þ ; ð48Þ

and the Q filter is expressed as

Q ðsÞ ¼ 45ð�sþ3Þ
s2þ19:57sþ135

: ð49Þ
Then, the controller is designed based on H2 theory as

CðsÞ ¼ s2þ6:5sþ42:25
144:86ð0:2s2þ2:6sÞ: ð50Þ

Finally, we get the prefilter as

CðsÞ
1þCðsÞPnðsÞ

¼ s2þ6:5sþ42:25
144:86ð0:2s2þ1:6sþ3Þ: ð51Þ

Fig. 10 shows the robust stability condition of the closed-loop
system with DOB. It is verified from Fig. 10 that the weighting
function that reflects the robust stability condition W2ðsÞ is well
selected. It is also shown that the optimized Q filter satisfies the
robust stability condition very well. The output in Fig. 11 shows the
control performance of control system in the presence of con-
stantly disturbance. Without DOB, there exists steady-state error
caused by external disturbances and system uncertainties. The
designed DOB can eliminate the steady-state error successfully.

We can easily calculate the DC gains of the real and nominal
plants with s¼ j0 as: Pðj0Þ ¼ 12:0, Pnðj0Þ ¼ 10:3. It is clear that the
DC gain of the nominal model does not match that of the real
system. However, due to the simulation result shown in Fig. 10, the
proposed method can enable the output to converge to the
reference signal successfully without steady-state error. This
design example shows that the mismatch of the DC gains of the
real and nominal plant will not bring the control system with
uncorrected error between the output and the reference signal.

6. Conclusions

In this paper, we mainly focus on the DOB based controller
designed for stable NMP systems with both RHP zeros and time
delay. A systematic DOB design strategy is proposed. We synthe-
size the internal and robust stability constraints, relative order and
mixed sensitivity design requirements together to establish an
optimization function. The standard H1 theory is applied to obtain
the optimal solution. At last, we consider a NMP process and
present the design procedure specifically to show that all the
constraints can be guaranteed based on the design procedures.
Simulations are carried out to show that the proposed method can
be successfully employed for stable NMP systems. It is verified that
the proposed method can be used effectively under different
conditions of external disturbances.Fig. 10. Verification of robust stability condition.

Fig. 11. Step response with constantly disturbances.

Fig. 9. Control output with periodic disturbance.
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